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Abstract. There exist several classes of high energy trajectories that are injected from Earth 
centered orbits to deep space destinations and return to the vicinity of the Earth sometime later 
due to the direct influence of a third body perturbation.  These trajectories can be designed to 
flyby the moon or near Earth asteroids and comets. The appealing characteristic of these 
trajectories is that they require a single injection maneuver at the Earth and no further 
translational control thereafter.  A spacecraft on such a trajectory can take observations and 
measurements of the flyby body and download the data once it returns to the vicinity of the 
Earth. The return trajectory could place the spacecraft into a direct reentry path through the 
Earth's atmosphere or an elliptical or hyperbolic Earth flyby that will be completely passive since 
no maneuvers are made. This type of trajectory is applicable to passive spacecraft missions such 
as student built micro satellites that have no on board propulsion for attitude or translational 
control.  Issues addressed are the dispersions in the return trajectory due to errors in the injection 
maneuver and other orbit parameters.  The characteristics of an Earth return lunar flyby mission 
for small satellites are discussed. 
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Introduction 
 

Several universities have proposed small 
satellite projects that will send small 
spacecraft on the order of 100kg to various 
locations in cislunar space. Their efforts have 
been hampered by difficulties securing launch 
dates and raising the necessary financial 
resources to support the missions. As a result, 
progress on some of the missions has been 
sluggish, not allowing students the 
opportunity to see the project through from its 
concept to completion. This in effect, has  
diminished  the hands on experience that these 
programs were originally designed to give. 
 
Stanford University's Space Systems 
Development Laboratory (SSDL) identified 
these issues in its own micro-satellite program 
and as a result, the CubeSat Project was 
initiated. This project is unique because it 
allows students to participate in the mission 
from concept to completion. The program 
accomplishes this task by scaling down the 
satellites. That is, the CubeSats are 
picosatellites that must be ten centimeter 
cubes and have a mass less than or equal to 
one kilogram. 
 
The University of Texas at Austin in 
partnership with Stanford University intends 
to take the CubeSat initiative to a higher level 
by examining the possibility of sending 
CubeSats to the Moon, near Earth asteroids 
and comets. This paper is meant as both a 
catalyst and as a starting point to get other 
academic institutions excited about the 
possibilities of such a mission. 
 
This paper focuses on the free return 
trajectories necessary to successfully complete 
a lunar CubeSat mission. It also examines the 
sensitivity of the final Earth return conditions 
to the injection burn parameters. A discussion 

of the extension of the mission design aspects 
to comet and asteroid flybys is also included. 

 
 
Earth Return Lunar Flyby 

 
Free Earth return trajectories around the Moon 
have been studied and used since the Apollo 
era. The Apollo lunar landing missions used 
these trajectories to provide a free return and 
abort option for the human crew.  Lunar free 
return trajectories have also been used to place 
geostationary bound spacecraft in their proper 
orbits1,2.  This section describes the dynamics 
and techniques used to compute these 
trajectories and a method of examining the 
sensitivity of the solution with respect to 
perturbations in the injection sequence. 
  
The Force Model 
  
Generally, the fundamental dynamics 
associated with a spacecraft operating in the 
Earth-Moon system are studied in a force 
model that includes; the gravitational 
attraction from both bodies, additional 
accelerations due to other third body 
gravitational attraction, non-spherical 
gravitational perturbations, atmospheric drag, 
and solar radiation pressure. Since the small 
perturbations do not significantly influence the 
solutions examined here, they can be ignored.  
  
The state vector of the spacecraft relative to an 
Earth centered equatorial frame is defined as 

 
                        (1) 

 
Where rρ is the position vector of the 
spacecraft with respect to an Earth centered 
frame and vρ is the velocity vector.  
 
The fundamental plane is the equatorial plane 
of the Earth, and the z-axis points north. The 
second order vector equation of motion is 

TTT vrx )( ρρρ =
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Where EarthGM  is the gravitational parameter 
of the Earth, MoonGM  is the gravitational 
parameter of the Moon and 12r

ρ  is the position 
vector of the Moon relative to the Earth 
centered equatorial frame. 
 
Note that the last term in Eqn. 2 accounts for 
the fact that the equations of motion are 
referenced to the center of the Earth, and not 
an inertial frame. This is an explicit function 
of time and is given by a standard lunar 
ephemeris. 
 
To study the sensitivity of the solutions to 
perturbations in the state at discrete times it is 
necessary to linearize perturbations along a 
nominal solution. The process is as follows.  
The first order form of the equations of 
motion are given by 
 

                       
(3) 

 
 
 
Linearization of perturbations along a solution 
are given to first order by  
 

          (4) 
 
where 
 
 
 
 
 
which is subjected to the initial condition  
 

 
  

Here ),( ottΦ
ρ

is the state transition matrix,   

)(~ txρδ  is the contemporaneous state 
perturbation, )(txρδ is the total state differential 
and 66XI

ρ
 is a 6 x 6 identity matrix. The state 

transition matrix is used to map perturbations 
in position and velocity between discrete 
times.  Along with the first order equation of 
motion, it forms the set of the variational 
equations of the system.  The G

ρ
 sub-matrix is 

a gravity gradient matrix that takes the form  
 

               (5) 
 
 
 
 
where  
                               
 
 
Finite Burn Model 
  
Spacecraft maneuvers that change the 
trajectory can be considered impulsive if the 
duration of an engine burn is short compared 
to the total mission time. Impulsive maneuvers 
are then treated as discrete points on the 
trajectory where the velocity vector and the 
mass of the spacecraft are changed 
instantaneously.  If the maneuver is not treated 
impulsively, but rather as a finite burn of a 
certain duration, then the mass of the vehicle 
is an additional state variable that is included 
in the equations of motion.  The resulting 
equations of motion are 
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Where T is the thrust of the engine, uρ is the 
thrust pointing unit vector and c is the 
engine’s exhaust velocity. The analysis 
presented here includes results for both the 
impulsive and finite burn engine models. 
  
Trajectory Identification 
  
To construct a solution that begins at the 
Earth, flies around the moon, and returns to 
the Earth, assume the spacecraft is in a 
parking orbit about the Earth defined by the 
classical elements (a, e, i, Ω, ω, ν) at an epoch 
to. Assume further that Ω can be adjusted, but 
the remaining elements are fixed; the fixed 
elements depend on the launch system that 
places the spacecraft in Earth orbit.  Opting to 
parameterize position in orbit via a coast time 
from to, instead of using the true anomaly, ν, 
let ti represent the time the injection maneuver 
for the translunar injection burn is made.  The 
maneuver is constrained to point along the 
velocity direction at the point the maneuver is 
made.  With these conditions, a lunar flyby 
trajectory that returns to the Earth can be 
produced by choosing as independent 
variables the vector aρ which is as  
 

        (8) 
 

The epoch, to, is a necessary free parameter 
that controls' the location of the Moon. Ωo is 
necessary because it defines the location of the 
projection of the line of apsides on the 
equatorial plane thus allowing the translunar 
trajectory to point in the correct direction for 
an encounter with the Moon. ∆v is the 
magnitude of the injection maneuver and  tf is 
the final time. For the finite engine burn 
model, the maneuver begins at ti and the burn 
duration, ∆tb, is used to control the magnitude 
of the maneuver. The thrust direction can be 
chosen to point along the instantaneous 
velocity vector or held inertially fixed during 
the maneuver. 

Let a subset of the fixed parameters form a 
constant vector b

ρ
, which is defined by  

 
          (9) 

 
Where ao is the semi major axis, eo is the 
eccentricity, ii is inclination, ωo is the 
argument of perigee and νo is the true 
anomaly. 
 
Finally, let the final constraint vector (the 
target vector) be the vector cρ, which is 
defined by  

                        
 

(10) 
 
 
 
 
 
Where *

fr  is the desired final radius distance 

at tf, *
fr& is the desired radial velocity, and *

xfh , 
*
yfh , *

zfh  are the x, y, z components of the 
angular momentum unit vector. Note that all 
of these parameters are referenced to the Earth 
centered equatorial frame. 
 
This constraint vector must be targeted to be 
zero to obtain a converged solution. The 
parameters of Eqn. 10 control the final 
inclination and ascending node. As an 
example, if it is desired to generate a post 
lunar flyby Earth centered trajectory with a 
perigee radius of 10,000 km and zero 
inclination relative to the equator, the target 
values in cρ are given by 
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In principle, the problem is a two-point 
boundary value problem, where the trajectory 
constants are split and specified partly at to and 
tf, with both of these times being free and 
independent.  The problem is difficult to solve 
because the trajectory dynamics are governed 
by a highly nonlinear vector differential 
equation of motion that needs to be solved 
between the specified endpoints. It has been 
determined that an efficient nonlinear root 
finding algorithm based on a multi-
dimensional secant method is effective in 
solving this problem provided a reasonable 
estimate of the unknown parameter vector aρ  
is given3.The gradient of cρ with respect to aρ 
is needed and it can be estimated numerically 
via finite central differences or by using the 
variational equations presented earlier. 
  
Providing an initial estimate is based on using 
a bielliptic and patched conic transfer model4.  
This model provides a reasonable estimate on 
all of the parameters that form the parameter 
vector aρ. This is followed by an iterative 
search until convergence is achieved. 
  
Sensitivity Analysis 
  
Having obtained a converged solution that is 
taken as a nominal trajectory, it is necessary to 
examine the sensitivity of this trajectory with 
respect to errors in the parameters used to 
define it.  These errors include orbit 
determination errors of the spacecraft at a 
certain epoch, errors in the timing of key 
events such as maneuver start and end times, 
and errors associated with the maneuver itself, 
such as the thrust pointing attitude vector.  
Other error sources that should be accounted 
for in such a study include errors in the 
dynamic force model.  In this section, the 
sensitivity matrix of the final constraint vector 
with respect to the parameters that define the 
trajectory is derived for both the impulsive 
and finite burn engine models.  This matrix, 

also known as the Jacobian matrix, can be 
used to determine which parameters most 
influence the final conditions.  This analysis 
would then determine which parameters need 
to be controlled or monitored more accurately 
on these types of trajectories. 
  
Sensitivity Analysis for the Impulsive Burn Model 
  
For a converged trajectory uniquely described 
by the vectors aρ and b

ρ
, a new 11 element 

parameter vector is defined as  
 

        (12) 
 
Where or

ρ  is the initial position vector at to, ov
ρ    

is the initial velocity vector at to, it  is the coast 
time from to,

 vρ∆  is the ∆v vector applied to 
the trajectory at ti and ft is the final time. 
 
vρ∆  can be decomposed into 3 components 

which are given by  
 

              (13) 
 
 
 
 
 
Where v∆  is the scalar magnitude of the 
maneuver, α is the right ascension of the 
maneuver vector and β  is declination of the 
maneuver vector 
 
 The state at ti prior to the maneuver is ir

ρ, 
−
iv

ρ so that α and β are defined by 
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of  −

iv
ρ . 

  
The velocity vector after the maneuver is 

vvv ii
ρρϖ ∆+= −+ . Eqn. 12, the parameter vector 

becomes 
 

    (16) 
 
 
The constraint vector, Eqn. 10, is redefined as 
a 2 x 1 vector  

              
     (17) 

 
 
 
where *

fi  is the final target inclination and *
Pfr  

is the final target perigee radius.  
 
The goal of the sensitivity analysis is to 
determine the gradient of cρwith respect to aρ. 
Since )(acc ϖρρ = , the differential of cρis given 
by 

                                   
(18) 

  
 
Eqn. 18 represents the Jacobian matrix of the 
system and its coefficients provide a linear 
estimate of the sensitivity of the final 
conditions or constraints with respect to 
perturbations in the parameter vector aρ. This 
matrix is constructed by using the variational 
equations on the two segments of the 
trajectory; the first segment is from to to ti and 
the second segment is from ti to tf. The 
Jacobian matrix is computed as 
 

(19) 
 
 
 
 
 

where 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 

 
 

In evaluating 
fx
c
ρ
ρ

∂
∂ , its components are readily 

evaluated since rpf and if can be expressed 
explicitly as functions of rρand vρ. 
  
Sensitivity Analysis for the Finite Burn Model 
  
Similarly, the parameter vector for the finite 
burn model is chosen to be  
 

    (20) 
 

Where tj is the maneuver end time. 
 
Using the same constraint vector as before, the 
Jacobian of the present system needs to 
account for the continuous burn segment that 
is integrated with the finite thrust value.  The 
Jacobian matrix for this case takes the form  
 

          
(21) 
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Note that *
jiΦ

ρ
 is a submatrix partition of a      

9 x 9 state transition matrix, ),( ojji ttΦ=Φ
ρρ

, 
evaluated along the finite burn segment with 
states rρ, vρ, m, α, β. Here, *

jiΦ
ρ

is jiΦ
ρ

 with 
the last three rows and the seventh column 
removed and 
 
  
 
 
 
These relationships are then applied to a 
nominal transfer trajectory, and the Jacobian 
matrix of the system contains the sensitivity 
coefficients, to first order, of the final 
constraint conditions with respect to the 
injection parameters. 
 
Sensitivity of a Nominal Impulsive Trajectory 
 
As an example application of the perturbation 
analysis, a nominal Earth return lunar flyby 
trajectory has been determined.  Table 1 lists 
the initial parameters that define this 
trajectory. 
 
 

Table 1 - Transfer Trajectory Parameters 

Parameter Symbol Value Units 
Epoch to 2452263.430556 Julian Date 

Semi-major axis ao 6578.137 km 
Eccentricity e 0.000 - 
Inclination i 28.500 deg 

Ascending node Ω 200.266 deg 
Argument of 

periapsis ω 0.000 deg 

True anomaly ν 0.000 deg 
Maneuver time ti 5308.248 sec 
∆v magnitude ∆v 3.142770 km/s 

Final time tf 7.460290 days 
Final periapsis 

radius rpf 8000 km 

Final inclination if 10 deg 

 
 
Based on the parameters of Table 1, a new 
parameter vector that contains explicitly the 

initial state and the maneuver parameters is 
tabulated in Table 2. Using the Jacobian 
matrix for this system, a perturbation to the 
initial parameter vector is examined.  Table 3 
lists the effect that this perturbation has on the 
final perigee radius and inclination of the 
Earth return trajectory.   
 
Based on these results, it is clear that the final 
conditions are highly sensitive to most of the 
initial perturbations. In particular, the timing 
of the maneuver and the maneuver parameter 
values themselves are the most critical 
parameters associated with this trajectory. In 
the current configuration, an error of .1 deg in 
the right ascension of the maneuver will raise 
the perigee radius by nearly 1700 km.  These 
results indicate that the maneuver has to be as 
accurate as possible. In contrast, the 
perturbation in the state parameters (position 
and velocity) just prior to the maneuver is not 
as critical.  The uncertainty in the position and 
velocity of the spacecraft prior to the 
maneuver is available from the orbit 
determination process. However, this 
information is known prior to the maneuver 
itself so that the maneuver parameters can be 
recomputed based on the latest orbit 
determination data. 
 
 

Table 2 - Converted Transfer Trajectory 
Parameters 

Parameter Symbol Nominal Value Units 
Maneuver time to 5308.248 sec 

x position x -6170.913 km 
y position y -2278.533 km 
z position z 0.000 km 
x velocity x& 2.3696 km/s 

y velocity y& -6.4175 km/s 

z velocity z& 3.7143 km/s 
∆v - magnitude ∆v 3.1427 km/s 

∆v – right 
ascension α -69.842 deg 

∆v - declination β 28.499 deg 
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Table 3 - Perturbation Results 

Perturbed 
Parameter Symbol Perturbation ∆∆∆∆rp(tf) 

km 
∆∆∆∆if  
deg 

Maneuver 
time δto 1 sec 930.799 2.928 

x position δx .01 km .894 0.385 
y position δy .01 km 3.602 0.155 
z position δz .01 km -0.515 0.0017 
x velocity x&δ  .0001 km/s 49.200 -1.318 
y velocity y&δ  .0001 km/s -32.267 3.894 
z velocity z&δ  .0001 km/s 25.307 -2.235 

∆v – 
magnitude δ∆v .0001 km/s 244.024 -4.079 

∆v – right 
ascension δα .1 deg 1691.745 5.328 

∆v - 
declination δβ .1 deg -15.879 -0.170 

 
 

Applications for CubeSats on Deep Space 
Free Return Trajectories 

  
As stated before, a deep space free return 
trajectory provides the capability for a 
spacecraft to observe a celestial object such as 
the moon, a comet, or asteroid for a brief 
period prior to returning to the Earth.  The 
following is a list of possible CubeSat 
missions: 
  

• CubeSats could be used to look for 
water on the surface of the Moon by 
using specialized sensors 

  
• A constellation of CubeSats could be 

sent around the moon where a subset 
of these could land or impact the moon 
and the remainder could collect the 
data transmitted by the impactors or 
landers. 

  
• One or several CubeSats can analyze 

the chemical composition of a comet’s 
tail or the composition of near Earth 
asteroids. 

 
A top level goal for any of these missions is to 
inspire students of all ages through hands on 

participation in the program at any stage in the 
mission.   

 
Based on these possible mission examples, it 
is clear that this class of picosatellites has the 
potential of being ideal space system for 
exploring the environment within several 
million kilometers of the Earth.   

 
 

A Nominal Lunar CubeSat Mission 
 
A mission plan for a lunar CubeSat mission is 
laid out in this section. The purpose of the 
mission is to use CubeSats to take pictures of 
both the Earth and the Moon while it is on a 
free return trajectory. Topics discussed 
include the mission timeline, the trajectory 
and propulsion considerations.  
 
Mission Assumptions 
 
During the analysis, several assumptions were 
made dealing with the location and time of the 
launch. Kennedy Space Center (KSC) was 
chosen as the launch site since it is a probable 
launch location. The time of launch was 
chosen to demonstrate the fact that this 
mission could happen immediately provided a 
launch vehicle was available. A true date of 
departure is hard to estimate since the logistics 
involved in getting student built satellites a 
ride on a launch vehicle are very complex. 
The mission will need to be designed around 
an available launch date and not the other way 
around.  Based on the methodology used to 
identify a free return lunar flyby, such 
trajectories can be simulated by using the 
Astrogator Module of the Satellite ToolKit 
(STK)5. 
 
Mission Scenario: 

The mission scenario is based upon a 
launch from KSC on December 19, 2001 at 
00:00:00 UTCG. Table 4 summarizes the 
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entire mission from launch to return.  The 
mission can be launched earlier provided the 
spacecraft is positioned in the correct orbit so 
that perigee occurs on December 19, 2001 at 
23:48:08.13 UTCG. The insertion motor will 
have to fire at the specified time since the 
CubeSats will not have any fuel allocated for 
correction maneuvers. This mission, unlike 
typical missions, will have more of an 
insertion point of opportunity rather than a 
window.  

 
Table 4 – Mission Timeline 

Event Day 
Start 
Time 

(UTCG) 

End 
Time 

(UTCG) 
Launch from KSC 
and Parking Orbit 

Maneuvering 
2001/12/19 00:00:00 23:48:08 

Systems Check 
(Pictures Taken) 2001/12/20 00:00:00 01:00:00 

Initial Orbit 
Determination 2001/12/20   

∆V Applied 2001/12/20 01:16:35 01:16:35 
CubeSats are Within 

10,000 km of the 
Moon (Pictures 

Taken) 
 

2001/12/23 21:49:00 01:27:00 

CubeSats are Within 
10,000 km of Earth 
(Data Downloaded) 

2001/12/24 08:43:00 TBD 

    
 
 
Figure 1 shows a two dimensional view of the 
nominal free return trajectory. 
 

 
Figure 1 - STK Generated Free Return Trajectory 

 

The periselene altitude of this trajectory is 
3436 km above the moon’s surface, and the 
perigee altitude of the return trajectory is 1624 
km. The ∆V required for this particular 
mission from a 200 km parking orbit in LEO 
is 3.13 km/s. 
 
Figures 2-4 represent snap shots at various 
times during CubeSat’s flight.  Note that the 
green line represents CubeSat’s outbound 
trajectory, while the red line represents its 
inbound trajectory and the blue line represents 
the Moon’s orbit.  
 

Figure 2 - CubeSat During Earth Departure 
 

Figure 3 - CubeSats Approach the Moon 
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Figure 4 - CubeSats at Periselene 

 
 
Booster 
 
This mission by its very nature will require 
that only one maneuver be made in LEO. The 
accuracy of this maneuver is the most critical 
aspect of such a mission. Therefore, the 
booster or kick motor will be required to have 
a sophisticated onboard guidance system.  
Nevertheless, it is possible to examine the 
performance of currently available booster 
motors from a payload perspective.   
 
Star motors6 are a class of small boosters that 
can be used for this purpose. An injection 
accuracy study would need to be performed on 
such a booster prior to choosing it as the 
nominal booster for this class of mission.  
 
The payload mass that can be placed on the 
nominal translunar trajectory can be 
determined by the rocket equation 

 









−

=∆
MfMo

MogISPV ln**           (22) 

 
Where ∆V is the known magnitude of the 
maneuver, g is the acceleration due to gravity, 
ISP is the specific impulse of the motor and 
Mo is the total mass of the spacecraft. The 
total mass of the spacecraft is explicitly 
defined by the following equation. 

 
MsMpMmMfMo +++=          (23) 

 
Where Mf  is the mass of the fuel, Mm is the 
mass of the motor, Mp is the mass of the 
payload and Ms is the mass of the structure 
required to join the CubeSats with the motor. 
 
 Table 6 summarizes the results obtained from 
the motor sizing. All six motors examined are 
capable of producing the required ∆V, but do 
so with different parameters allowing 
anywhere from 3 to 45 CubeSats to be 
injected on the translunar trajectory.  The 
number of CubeSats chosen for the mission 
will depend on how much payload and space 
is allocated by the launch vehicle. It is 
desirable to reach a balance between the 
maximization of the number of CubeSats and 
the total mass of the system. Increasing the 
number of CubeSats brings the cost of the 
overall program down but having too heavy of 
a system will limit the choice of launch 
vehicle.  

Table 5 - ∆∆∆∆V Analysis Worksheet 
STAR # ISP (s) Mf (kg) Mp (kg) Ms (kg) Mm (kg) Mo (kg) g (m/s^2) DV (km/s)
15 240 33.3389 5 4.5 2.4671 45.3059 9.81 3.1344
17 228 45.1322 5 4.35 5.3707 59.8529 9.81 3.1372
17A 286.2 69.6261 15 11.17 7.6589 103.4549 9.81 3.1384
20S 286.7 112.2635 30 17.5 7.4094 167.1729 9.81 3.1313
20 234 114.7583 20 8.75 10.5578 154.0660 9.81 3.1356
20A 286.5 273.1973 75 34 24.5878 406.7850 9.81 3.1296  

 
Based on this, the STAR 20 motor, which has 
a successful track record, can place 16 
CubeSats on the nominal trajectory. The 
combined mass of the booster and the 
CubeSats should be small enough to fly as an 
auxiliary payload. The STAR 15 on the other 
hand is also a reliable motor but is only 
capable of propelling 3 CubeSats. This option 
might be more viable in the event that the 
launch vehicle places an upper limit on the 
total payload launched to orbit.  
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Earth Return Trajectories to Asteroids and 
Comets 

 
In a force field that includes the gravitational 
effect of the Earth and the Sun, there exist 
trajectories that have a hyperbolic energy 
relative to the Earth at departure, but return to 
the vicinity of the Earth several months later.  
These trajectories are solutions to the 
restricted three-body problem force field 
model and can be designed in a realistic Sun-
Earth moon model that includes lunar and 
planetary perturbations.  Like the free return 
lunar flyby trajectories, these trajectories 
require only one properly designed and 
executed injection maneuver from a low Earth 
parking orbit.   
 
At the same time, knowing the orbital 
elements and the ephemeris of near Earth 
crossing comets or asteroids, it is possible to 
have a spacecraft intercept or flyby one of 
these objects.  Such trajectories have been 
found and discussed in the literature7,8.  In 
these studies, flybys have been found for 
comets such as Encke, or asteroids such as 
Eros. 
 
Due to the fact that the distance at which the 
flyby occurs is on the order of several million 
kilometers, it is expected that these trajectories 
will be highly sensitive to the launch 
parameters and will require greater accuracy 
than the lunar flyby mission. In contrast, the 
flyby body, being of a small mass compared to 
the Moon, will not provide a significant 
gravity assist or deflection maneuver to the 
spacecraft.  Future work will examine the 
efficient computation of such trajectories, 
their stability and their sensitivity to injection 
parameter errors. 
 
 
 
 

Conclusions 
 
An efficient procedure has been described to 
compute Earth return lunar flyby trajectories 
applicable to passive spacecraft such as small 
satellites.  Using the variational equations of 
motion for a spacecraft in the Earth-Moon 
system, the sensitivity of the Earth return 
trajectory to errors in the injection maneuver 
has been determined.  Based on this analysis, 
the injection maneuver needs to be done with 
a reliable booster with onboard closed-loop 
guidance and possibly with the additional 
capability of providing a correction maneuver 
several hours after the main injection burn. 
 
The possibility of designing and operating 
student built satellites on missions to the 
Moon and other near Earth celestial objects is 
intriguing because it extends the current 
envelop of where small student built satellite 
can operate.  A mission that flies by the moon 
is relatively short (several days) yet will 
require careful planning since the encounter is 
brief and the trajectory dispersions on the 
return to the Earth could be large. 
 
Several additional studies need to be 
completed prior to seriously considering such 
a mission.  These include studies on the 
required spacecraft systems needed to operate 
autonomously at the flyby body, the 
communications requirements during the 
mission and the orbit determination 
requirements necessary to track the spacecraft.  
 
There is no doubt such missions will take 
place in the future. Our goal is to make this 
happen as soon as practical and give the 
current generation of students the opportunity 
to work on the first student built spacecraft to 
operate in the vicinity of the Moon. 
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